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Abstract. An exponential representation of the Jordanian matrix quantum g€up(2) is
constructed in explicit form by the generators of the classical Lie alggb(a, C).

1. Introduction

Realizations of generators of quantum algebras and groups [1, 2] by the base elements of
related undeformed systems can be useful for development of general theory as well as for
the solution of concrete problems. It seems that a realization of this sort was first given by
Jimbo in his well known paper [3] for the Borel subalgebras of the standard quantized simple
Lie algebras. In [4] a deforming map (in the author’s terminology) was constructed, which
represents the generators of the quantum algebyé?) by the undeformed ones. A similar

map was recently obtained for the Jordanian deformatiaii (@) [5]. In [6] a method was
suggested which is suitable for any standard quantized group related to the classical Cartan list.
This method is based on the quantum algebra homomorphism constructed by Jimbo in [3] and
the specific properties of the Gauss decomposition of these groups. The quantum variant of
the decomposition of number matrices was discussed in many papers from different points of
view (see, for example, [7], the brief review [8] and references therein). Let us recall that the
Gauss decomposition of a matrix quantum group is defined as a transition fram th@atrix

T = (;j),i,j =12,...,nofthe original generators satisfying the matlf T-relation [2]

(with a square number matriR of ordern?)

RTW\T> = ToT1R 1)

to the new matrices of Gauss generai@rs, Tp, Tyy) connected witl" by the usual classical
formulaT = T, TpT,. HereT; andTy are, respectively, strictly lower- and upper- triangular
matrices with units at their diagonal®y, is a diagonal matrix. In the relation (1) standard
notationTy =T ® 1, T> = 1 ® T is used, where 1 is a unit matrix.

There are two constructive procedures to obtain the Gauss decomposition for any
matrix quantum groufl”: non-commutative generalization of the usual Gauss algorithm and
contraction [8]. Both procedures have restrictions but they lead to the same result in the case
of the standard quantized groups of the classical series. The main attractive properties of
Gauss generators of these groups, which permit us to use the Jimbo homomorphism, are still
quadratic commutation relations among them and especially mutual commutativity of every
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element off; with every element off ;. This is the reason why we can consider the problem

of realization of quantum generators by the classical ones (or by operators of creation and
annihilation [9]) separately for each Borel subgroup of a quantum group. These subgroups
relate to the matrice ™ = T; T, andT™ = T, T,. It can be shown [6] with the Faddeeyv,
Reshetikhin and Takhtajan (FRT) framework tiiét) are isomorphic to the Borel subalgebras
L® of the corresponding dual quantum algebras for which the Jimbo homomorphism exists.
In this way, for example, we obtain for the quantum gréug (2) the following representation

[6]:
gXO) @ g2 gH2@gHI2 4+ foX(-) @ X®

whereX® | H are the generators of the classical algei(a, C) with the usual commutation
relations [H, X®] = £2X®, [X®, XD] = H and f, g are arbitrary constants.

As quantum groups are dual structures of the relate quantum algebras it is natural to expect
that the above representation (2) can be simplified if one uses the generators of the dual Lie
algebrasi¥ (2, C) instead of/(2, C). Recall [1] that commutation relations among generators
of the Lie algebra, which are dual to any quasitriangular Lie bialgéhré ), are defined by
the 1-cocyclel, associated with a classicaimatrix. In the case ofL,(2) such an--matrix
can be obtained from the matrix

)

q 0 0 0
) 0 1 00 -
=10 g-g1 1 0
0O 0 0g
byr, = dd—’f;|q=1 and it yields for thal* (2, C)-generatordd,, X ® the following commutation
relations:
[ﬁs’ )N(‘E:t)] — iii) [§§+)’ )~(§7)] =0 (4)
Using (4), we obtain the realization
A, H X+
r—( 9 NfQNANN . 5)
gX{ g™ g7+ feX(TgM X

Representations of the form (2) or (5) can be constructed for a quantum group provided
that this group has the Gauss decomposition with the properties mentioned above. However,
there are quantum groups without such properties. For example, in the case of the Jordanian
quantum group L, (2) [10, 11] the contraction procedure gives only partial decomposition,
whereas commutation relations among new generators, obtained by the Gauss algorithm, are
non-quadratic ones. For this reason in the present work we shall consider the representation
of the Jordanian quantum group which is similar to the classical exponential representation
of elements of Lie groups. The representation of this form was studied in [12] for the group
GL,(2). The authors of [12] have taken into account the following exponential-like property
of the GL,(2) T-matrix:

Ry(q*)T{T; = T;T;R,(q°) 6)
whereT’ = T? and R,(¢?) is the R-matrix (3) withg replaced by;? (note thatR,(q?) #

R,(¢)?). The property (6) allowed them to assume the exponential structure of 1he2)
T-matrix

rogn oML g ™

= k!
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The elements of the matrid4 are exactly the mentioned* (2, C)-generators,, X&)
completed by the central elemerdis

A+¢ X
M = ~ ~ o~ .
X&) —H +C;

In the paper [12] it was proven that the seriegidefined by (7) with coefficients from the
universal enveloping algebta(si; (2, C)) produce the generators 6fL,(2), however, the
formulae were not given in closed form. Here we shall consider a similar representation for
the Jordanian quantum grofl, (2) and obtain the explicit expressions for its generators.

2. Exponential representation

The JordaniamR-matrix is the one-parameter number matrix

1 0 00
“h 1 00

Rw=114 o 10 ®
A |

where# is a deformation parameter. This matrix satisfies the remarkable functional equation
R(h1)R(h2) = R(h1 + hy). 9)

Equation (9) implies that the quantuRimatrix (8) can be written as an exponential function
R = exp(hr) of the number classicaltmatrix

0 0O 0O
-1 0 0 0
r= . (10)
1 0 00
0O -1 1 0

Using the RT T-equation (1) withR given by (8), we obtain for th& L, (2) generators
T = (4;), i, j = 1, 2 the following quadratic relations [11] ([10] for tile= 1 case):

[t11, t12] = —ht?, (11)
[t11, 121] = h(t3) + trotar — taatan — hitiotzr) = h(t3) + tart1o — taot1s + htootio) (12)
[t11, t22] = h(t11t12 — t22t12) = h(t12t11 — t12t22) (13)
[t12, t21] = h(t1at12 + t12t22) = h(t12t11 + t22112) (14)
[t12, t22] = hi?, (15)
[t21, t22] = —h(t3, — tiataz + t2at12 + hit1atiz) = —h(t5, + tiota1 — tot11 — hiratiy). (16)

The quantum determinant (central element) has the form
det, T = D = t11t20 — t12tp1 + hit1otoo. a7

Taking into account expression (17), we can rewrite the formulae (12) and (16) in the shortened
form

[t11, t21] = h(t} — D) [t21, 120] = h(D — t3y).
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Itis not difficult to show by direct calculation that the quadratic relations (11)—(16) imply
equation (6) with the JordaniaR-matrix (8) of doubled argumerR(2h)
R(2h)T|Ty = TyT{R(2h).

As the previous equation holds for arbitrary values of the pararmeigs naturally to assume,
following [12], that theT-matrix of the Jordanian quantum group can be expressed as an
exponential of the form (7)

T =éeM,
Expand theR-matrix (8) in a series in the parameteand substitute it together with the series
(7) intheRT T -relation. The matrix coefficients at the second degréegive us the equation
[My, Mp] = [My+ M, r] (18)

which is the representation of the well known Poisson brackets in the quantum inverse scattering
method [13, 14]. Equation (18) yields for the matrix elements i, j = 1, 2 the following
commutation relations of a solvable Lie algebra:

[m11, mag] = [ma1, mag] = [maz, map] =0 [m12, mo1] = 2m1o
[m11, ma1] = [ma1, moo] = mag — moo.

Let us denoteni; = X + C, mip = X®, myy = H, map = —X + C and rewrite these
formulae as

[X®, f] = 2%® X, X1 =0 [C,]1=0. (19)

Note that the generatod, X®), C are linearly combined witt,, X, C, [12] (see the
introduction). B ~

Divide the matrixM into two partsM = C1 + M. SinceC is a central element, the
matrix T' can be factored as

T = ClgM. (20)

We shall see below that the second factor in (2ZD)= €' determines the exponential
representation of L, (2). To obtain such a representation consider

T — (til tiz) _ Z (hMy)".

s s |
I Iy =

Put

(n) (n) ~, ~

m m X xXx®

M — 11 12 MO — ML= M. — N ¢

s = m ;=1 s S_< H —-X9)
Ma My

From M** = M, M for the elements:;” one can easily write out the following recursion
relations:
D) _ ) ) T o) @) _ f o) o), o)
myp =X myg + X myy My = Hmyg — X"my; (21)
D _ R ), T, o D _ ) ), o
myp " = X"myy + X ma, My " = Hmyy — X"my;y. (22)

The relations (21) and (22) are organized as two independent but identical in form pairs.
Consider, for example, the first of them. We obtain by the iteration

mY = (X2 4 X0 Hym{ ™. (23)
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It is convenient to denote the determinant-like expression appearing in (23 by
(X2 + XM H. Introduce, as wellz2 = (X)2 + HX™® which connects withd? by
the formulat® = d? — ZXS). Note that bothd? and#? are not central elements for the Lie
algebra generated b)g/<+>, X andH. From the recursion relation (23), taking into account
mY =1,m{Y = X, we obtain the solution containing only even degreed: of

my’ =d*  m{™ =d"X, (24)

Using this solution we obtain formally

s h2n 2n h2n+ 2n 7 (=) (- )
t= n:oﬁd +Zmd X = coshthd) +d~* sinh(hd) X

The relation (A2) from the appendix permits us to rewrite the expressiasj,for terms oft
instead ofd,
1§, = coshht) + (h X + X))t~ sinh(ht). (25)

Note that the above series give no a representatiofy afi the standard basis of a universal
enveloping algebra.
Now return to recursion relations (21) and consider the second of them

RO = mf = Xy,
Substituting the elements (24) in this relation we obtain for the even coefficients
X®m <2n) — dXO @ — d?) = XD (=20 X 20Dy,
Since similar calculations can be carried out for the odd coefficients, we obtain
m(zzl") = —2n XD (2"+1) = 2n+ H)t*.
The summation leads to the expression
15, = hcoshht) + (H — hX) — 1)t~ sinh(ht). (26)

The other pair of recursion relations (22) can be solved by the same manner and the resulting
formulae have the form

£, = XOt Lsinh(ht) 13, = coshht) — X Ot L sinh(ht). 27)

As the final step it should be checked that these expressions satisfy the quantum group
commutation relations (11)—(16). Let us note, to simplify the check slightly, that the Jordanian
R-matrix (8) commutes with the number matebg (1):

1 0 0 O

1 0 1 0 -h 1 0 O
A@(h)=A(h)®A(h)=<_h 1>®<_h 1)= h 0 1 0 (28)

h? —h —h 1

Therefore, the elements of the matrix

t5, —ht], tf
H=M®:<? ?1ﬁ

s
1y —htzy 13
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satisfy theRT T-equation (1) if and only if the elements @f satisfy it. Using the auxiliary
commutators given in the appendix by the formulae (A3), we can easily check the group
relations (11)—(16) and the identity

det;,TS =1

Hence, the expressions (25)—(27) give us in closed form the realization of the2)
generators. Multiplying each of these formulae BY €see (20)), we obtain the desired
exponential representation of the Jordanian quantum gtau2).

Leaving out possible applications of the obtained formulae for constructiah/gf2)
representations, let us note that the exponential form (7) implies the formula

T(h)T(h2) = T'(hy +h2). (29)

ConsiderindI'(k) as the one-parameter set of matrices with hon-commutative entries we can
define their action on a quantum vec&rby

t11(h1) flz(h1)> (xl(h2)> _ (xl(hl + hy)

T(hy) X (hy) =
(h) X (h2) (l‘zl(hl) tro(hy) x2(h2) x2(hy + hy)

) — X(uthy  (30)
where
1 0
X(h) = T(h)(o) or X (h) =T(h) (1)

SinceT is invertible one can say that equation (30) gives the isomorphism between quantum
vectors with different.

3. Hopf structure

A Hopf algebra structure on a matrix quantum group into the FRT framework [2] is defined as
AT) =TT S(Ty=T" e(T) = 1. (31)

Here(®) denotes the usual matrix producti®matrices with atensor product of their elements.

The above exponential realization of the Jordanian quantum group permits us to obtain easily
an antipode of each of its generator because of the calculation of the inverse matrix elements
reduces to the change— —# in the exponential or, which is the same, in the formulae (25)—
(27). Using thus derived formulae we can obtain (in the cast gf2)) the representation

tyo + hity —M; )

S(T) =T, ' = ) (32)
—l3y — hiyy + hiy + h¥ty, 13, — hiyp
Note that it is not possible to consider the transition— S(z;) by (32) as an involution

because oSZ(t,:f].) # 1;;. However, the following relation occurs:
ST, =UT,U ™ (33)

whereU = A(2h) with the number matrixd defined in (28).

Using the definition of comultiplication, antipode and counity (31) one can define a
heritable Hopf structure on the elementa\df and, consequently, on the universal enveloping
algebra of the solvable Lie algebt& (2, C). To this end we express the algebra matvi
via the group matrixy

M, =h""logT;. (34)
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This formula is correct since we consider the ‘deformation of the unitBnd 1 ~ O(h).
From the definition of co-operations and equation (34) we immediately obtain

A(M;) = h Hog T, (®)T, = h~tlog eMtweMe

S(My) = h~log S(T}) = — M, (35)

e(M,) = h tloge(T;) =0
Here M), = M(®)1, M = 1(®)M. According to (35), the definitions of the antipode
and counity are the same as in the undeformed case, but the definition of the comultiplication
is not. We derive the images of tthd;-matrix elements under the comultiplication operation
by the Campbell-Hausdorff formula for the first two terms

A(My) = My + M, + 3h[M;q), My2)] +
For the algebral*(2, C) generators we obtain

AKX = Ag(XO) + 1rXD A H + O(h?)

AXD) = Ag(X) +h X A X+ Oh?) (36)

A(H) = Ag(H) — hX ) A H + O(h?)
whereAp(A) = A® 1+ 1® A is undeformed comultiplication. It is natural to recognize in
expressions (36) the 1-cocydegof the bialgebrasi*(2), 8,)
5.X) =1XDAH 5.(XP) = XA X® S.(H) =X AH.
This bialgebra is dual to the triangular Lie bialgety&2), §) which is defined by the classical
r-matrix (10). Recall that the brackets and 1-cocycles of these Lie algebras are dual with
respect to a non-degenerate linear farm)

(6:(A), X AY) = (A, [X, Y]) ([A, Bl«, X) = (A A B,8(X))
whereX, Y € sl(2), A, B € sl*(2). In our case the form is defined by its values which are
only distinct from zero:

(5('(*)7 H) = ([:1" X(*)) — ()?(Jf)’ X(+)) =1

The general expressions for results of comultiplication (35) are cumbersome, so let us consider
the simpler case of the triangular subgroug &, (2) which is defined by the conditiag, = 0.
This subgroup is generated (via our representation (25)— (27)>§<b3/ and H. Since the
subalgebra generated by these generators is isomorphic to the Borel subatgetwia2, C),
we omit the tilde in what follows. ~

To obtain the desired formulae we put formay” = 0 in the expressions (25)—(27).
As a result we have

(=) X (=) _ a=hX®
ny =€ lpr =€

- o (37)
t2(1) =hH, = (H — 1)(X(7))71 S|nh(hX(*)) + hefhx )
Equations (37) directly imply the commutation relation
sinh(h X
[Hh, X(_)] = —ZL (38)

h

which is the relation among the generators of Jordanian deformation of algédra) [15].
Note here that our realization df, differs from those obtained in [5,16]. To calculate
A(X)), A(H) induced by group comultiplication, we use equations (31),

AC) =1 @1 A =657 @1 +15,) @157
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From the first of those we deduce tH&t™ is a primitive element off, (b7),
A(Z;_I)) — eﬁAx(f) _ ehx(f) ®ehx(*) _ ehon(f)'
Finally, using the explicit expression foj? (37) we obtain
AH) =1® 1+ (HK,® X" +e 7 g HK, (39)
—Ko@dX — e @ Ko+ he ™ @ X7y (AKp) (40)
In this formula
Ko = (X)) tsinh(hx).
It can be found fron¥k (see the appendix) by putting™ = 0.
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Appendix

Using the explicit expressions fof andd? one can check the following quadratic relations:

[X®), 2] = 2XHX® [t2, H] = 262 + 2(X )2
[X®, d?2] = 2XHX® [d2, H] = 2d2 + 2(X )2 (A1)
[d2, 7] = 4(X )2 d2X®) = X B2,

It is useful to add to the relations (A1) the formula

dZn — t2n + 2n)?(+)t2(n—l) (A2)
which is easily provable by induction. Indeed, we have
d2(n+1) — d2d2n — (tZ + 2§(+))(t2n + 2n5(/(+)t2(n71)) — t2(n+1) + 2(1’1 + 1)§(+)t2n

The commutators (A1) and formula (A2) imply the following useful auxiliary relations. Denote
S = coshht), K = t~*sinh(ht). We have
[X®, 8] = hXEP KX
[S, H] = h?K +h X KX
[X®, K] = X®t2(hs — K)X®
[K,H]=hS — K+X7t2hs - K)XO.

(A3)
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