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Abstract. An exponential representation of the Jordanian matrix quantum groupGLh(2) is
constructed in explicit form by the generators of the classical Lie algebrasl∗(2, C).

1. Introduction

Realizations of generators of quantum algebras and groups [1, 2] by the base elements of
related undeformed systems can be useful for development of general theory as well as for
the solution of concrete problems. It seems that a realization of this sort was first given by
Jimbo in his well known paper [3] for the Borel subalgebras of the standard quantized simple
Lie algebras. In [4] a deforming map (in the author’s terminology) was constructed, which
represents the generators of the quantum algebrasuq(2) by the undeformed ones. A similar
map was recently obtained for the Jordanian deformation ofsl(2) [5]. In [6] a method was
suggested which is suitable for any standard quantized group related to the classical Cartan list.
This method is based on the quantum algebra homomorphism constructed by Jimbo in [3] and
the specific properties of the Gauss decomposition of these groups. The quantum variant of
the decomposition of number matrices was discussed in many papers from different points of
view (see, for example, [7], the brief review [8] and references therein). Let us recall that the
Gauss decomposition of a matrix quantum group is defined as a transition from then×nmatrix
T = (tij ), i, j = 1, 2, . . . , n of the original generators satisfying the matrixRT T -relation [2]
(with a square number matrixR of ordern2)

RT1T2 = T2T1R (1)

to the new matrices of Gauss generators(TL, TD, TU) connected withT by the usual classical
formulaT = TLTDTU . HereTL andTU are, respectively, strictly lower- and upper- triangular
matrices with units at their diagonals,TD is a diagonal matrix. In the relation (1) standard
notationT1 = T ⊗ 1l, T2 = 1l⊗ T is used, where 1l is a unit matrix.

There are two constructive procedures to obtain the Gauss decomposition for any
matrix quantum groupT : non-commutative generalization of the usual Gauss algorithm and
contraction [8]. Both procedures have restrictions but they lead to the same result in the case
of the standard quantized groups of the classical series. The main attractive properties of
Gauss generators of these groups, which permit us to use the Jimbo homomorphism, are still
quadratic commutation relations among them and especially mutual commutativity of every
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element ofTL with every element ofTU . This is the reason why we can consider the problem
of realization of quantum generators by the classical ones (or by operators of creation and
annihilation [9]) separately for each Borel subgroup of a quantum group. These subgroups
relate to the matricesT (−) = TLTD andT (+) = TDTU . It can be shown [6] with the Faddeev,
Reshetikhin and Takhtajan (FRT) framework thatT (±) are isomorphic to the Borel subalgebras
L(±) of the corresponding dual quantum algebras for which the Jimbo homomorphism exists.
In this way, for example, we obtain for the quantum groupSLq(2) the following representation
[6]:

T =
(
q−H/2⊗ qH/2 f q−H/2⊗X(+)
gX(−) ⊗ qH/2 qH/2⊗ q−H/2 + fgX(−) ⊗X(+)

)
(2)

whereX(±), H are the generators of the classical algebrasl(2, C)with the usual commutation
relations [H,X(±)] = ±2X(±), [X(+), X(−)] = H andf, g are arbitrary constants.

As quantum groups are dual structures of the relate quantum algebras it is natural to expect
that the above representation (2) can be simplified if one uses the generators of the dual Lie
algebrasl∗s (2, C) instead ofsl(2, C). Recall [1] that commutation relations among generators
of the Lie algebra, which are dual to any quasitriangular Lie bialgebra(g, δs), are defined by
the 1-cocycleδs associated with a classicalr-matrix. In the case ofSLq(2) such anr-matrix
can be obtained from the matrix

Rs(q) =


q 0 0 0

0 1 0 0

0 q − q−1 1 0

0 0 0 q

 (3)

by rs = dRs
dq

∣∣
q=1 and it yields for thesl∗s (2, C)-generators̃Hs, X̃(±)s the following commutation

relations:

[H̃s, X̃
(±)
s ] = X̃(±)s [X̃(+)s , X̃

(−)
s ] = 0. (4)

Using (4), we obtain the realization

T =
(

qH̃s f qH̃s X̃(+)s

gX̃(−)s qH̃s q−H̃s + fgX̃(−)s qH̃s X̃(+)s

)
. (5)

Representations of the form (2) or (5) can be constructed for a quantum group provided
that this group has the Gauss decomposition with the properties mentioned above. However,
there are quantum groups without such properties. For example, in the case of the Jordanian
quantum groupGLh(2) [10, 11] the contraction procedure gives only partial decomposition,
whereas commutation relations among new generators, obtained by the Gauss algorithm, are
non-quadratic ones. For this reason in the present work we shall consider the representation
of the Jordanian quantum group which is similar to the classical exponential representation
of elements of Lie groups. The representation of this form was studied in [12] for the group
GLq(2). The authors of [12] have taken into account the following exponential-like property
of theGLq(2) T -matrix:

Rs(q
2)T ′1T

′
2 = T ′2T ′1Rs(q2) (6)

whereT ′ = T 2 andRs(q2) is theR-matrix (3) with q replaced byq2 (note thatRs(q2) 6=
Rs(q)

2). The property (6) allowed them to assume the exponential structure of theGLq(2)
T -matrix

T = ehM =
∑
k=0

(hM)k

k!
eh = q. (7)
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The elements of the matrixM are exactly the mentionedsl∗s (2, C)-generatorsH̃s, X̃(±)s

completed by the central elements̃Cs

M =
(
H̃s + C̃s X̃(+)s

X̃(−)s −H̃s + C̃s

)
.

In the paper [12] it was proven that the series inh defined by (7) with coefficients from the
universal enveloping algebraU(sl∗s (2, C)) produce the generators ofGLq(2), however, the
formulae were not given in closed form. Here we shall consider a similar representation for
the Jordanian quantum groupGLh(2) and obtain the explicit expressions for its generators.

2. Exponential representation

The JordanianR-matrix is the one-parameter number matrix

R(h) =


1 0 0 0

−h 1 0 0

h 0 1 0

h2 −h h 1

 (8)

whereh is a deformation parameter. This matrix satisfies the remarkable functional equation

R(h1)R(h2) = R(h1 + h2). (9)

Equation (9) implies that the quantumR-matrix (8) can be written as an exponential function
R = exp(hr) of the number classicalr-matrix

r =


0 0 0 0

−1 0 0 0

1 0 0 0

0 −1 1 0

. (10)

Using theRT T -equation (1) withR given by (8), we obtain for theGLh(2) generators
T = (tij ), i, j = 1, 2 the following quadratic relations [11] ([10] for theh = 1 case):

[t11, t12] = −ht212 (11)

[t11, t21] = h(t211 + t12t21− t11t22− ht12t22) = h(t211 + t21t12− t22t11 + ht22t12) (12)

[t11, t22] = h(t11t12− t22t12) = h(t12t11− t12t22) (13)

[t12, t21] = h(t11t12 + t12t22) = h(t12t11 + t22t12) (14)

[t12, t22] = ht212 (15)

[t21, t22] = −h(t222− t11t22 + t21t12 + ht11t12) = −h(t222 + t12t21− t22t11− ht12t11). (16)

The quantum determinant (central element) has the form

dethT = D = t11t22− t12t21 + ht12t22. (17)

Taking into account expression (17), we can rewrite the formulae (12) and (16) in the shortened
form

[t11, t21] = h(t211− D) [t21, t22] = h(D − t222).
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It is not difficult to show by direct calculation that the quadratic relations (11)–(16) imply
equation (6) with the JordanianR-matrix (8) of doubled argumentR(2h)

R(2h)T ′1T
′
2 = T ′2T ′1R(2h).

As the previous equation holds for arbitrary values of the parameterh, it is naturally to assume,
following [12], that theT -matrix of the Jordanian quantum group can be expressed as an
exponential of the form (7)

T = ehM .

Expand theR-matrix (8) in a series in the parameterh and substitute it together with the series
(7) in theRT T -relation. The matrix coefficients at the second degree ofh give us the equation

[M1,M2] = [M1 +M2, r] (18)

which is the representation of the well known Poisson brackets in the quantum inverse scattering
method [13, 14]. Equation (18) yields for the matrix elementsmij , i, j = 1, 2 the following
commutation relations of a solvable Lie algebra:

[m11, m12] = [m11, m22] = [m12, m22] = 0 [m12, m21] = 2m12

[m11, m21] = [m21, m22] = m11−m22.

Let us denotem11 = X̃(−) + C̃, m12 = X̃(+), m21 = H̃ , m22 = −X̃(−) + C̃ and rewrite these
formulae as

[X̃(±), H̃ ] = 2X̃(±) [X̃(+), X̃(−)] = 0 [C̃, ·] = 0. (19)

Note that the generators̃H, X̃(±), C̃ are linearly combined with̃Hs, X̃(±)s , C̃s [12] (see the
introduction).

Divide the matrixM into two partsM = C̃1l +Ms . SinceC̃ is a central element, the
matrixT can be factored as

T = ehC̃1lehMs . (20)

We shall see below that the second factor in (20)Ts = ehMs determines the exponential
representation ofSLh(2). To obtain such a representation consider

Ts =
(
t s11 t s12

t s21 t s22

)
=
∑
n=0

(hMs)
n

n!
.

Put

Mn
s =

(
m
(n)
11 m

(n)
12

m
(n)
21 m

(n)
22

)
M0

s = 1l M1
s =Ms =

(
X̃(−) X̃(+)

H̃ −X̃(−)
)
.

FromMn+1
s =MsM

n
s for the elementsm(n)ij one can easily write out the following recursion

relations:

m
(n+1)
11 = X̃(−)m(n)11 + X̃(+)m(n)21 m

(n+1)
21 = H̃m(n)11 − X̃(−)m(n)21 (21)

m
(n+1)
12 = X̃(−)m(n)12 + X̃(+)m(n)22 m

(n+1)
22 = H̃m(n)12 − X̃(−)m(n)22 . (22)

The relations (21) and (22) are organized as two independent but identical in form pairs.
Consider, for example, the first of them. We obtain by the iteration

m
(n+1)
11 = ((X̃(−))2 + X̃(+)H̃ )m(n−1)

11 . (23)
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It is convenient to denote the determinant-like expression appearing in (23) byd2 =
(X̃(−))2 + X̃(+)H̃ . Introduce, as well,t2 = (X̃(−))2 + H̃ X̃(+) which connects withd2 by
the formulat2 = d2 − 2X̃(+). Note that bothd2 andt2 are not central elements for the Lie
algebra generated bỹX(+), X̃(−) andH̃ . From the recursion relation (23), taking into account
m
(0)
11 = 1,m(1)11 = X̃(−), we obtain the solution containing only even degrees ofd:

m
(2n)
11 = d2n m

(2n+1)
11 = d2nX̃(−). (24)

Using this solution we obtain formally

t s11 =
∑
n=0

h2n

2n!
d2n +

∑
n=0

h2n+1

(2n + 1)!
d2nX̃(−) = cosh(hd) + d−1 sinh(hd)X̃(−).

The relation (A2) from the appendix permits us to rewrite the expression fort s11 in terms oft
instead ofd,

t s11 = cosh(ht) + (hX̃(+) + X̃(−))t−1 sinh(ht). (25)

Note that the above series give no a representation oft s11 in the standard basis of a universal
enveloping algebra.

Now return to recursion relations (21) and consider the second of them

X̃(+)m
(n)
21 = m(n+1)

11 − X̃(−)m(n)11 .

Substituting the elements (24) in this relation we obtain for the even coefficients

X̃(+)m
(2n)
21 = d2nX̃(−)(t2n − d2n) = X̃(+)(−2nX̃(−)t2(n−1)).

Since similar calculations can be carried out for the odd coefficients, we obtain

m
(2n)
21 = −2nX̃(−)t2(n−1) m

(2n+1)
21 = (2n + H̃ )t2n.

The summation leads to the expression

t s21 = h cosh(ht) + (H̃ − hX̃(−) − 1)t−1 sinh(ht). (26)

The other pair of recursion relations (22) can be solved by the same manner and the resulting
formulae have the form

t s12 = X̃(+)t−1 sinh(ht) t s22 = cosh(ht)− X̃(−)t−1 sinh(ht). (27)

As the final step it should be checked that these expressions satisfy the quantum group
commutation relations (11)–(16). Let us note, to simplify the check slightly, that the Jordanian
R-matrix (8) commutes with the number matrixA⊗(h):

A⊗(h) = A(h)⊗ A(h) =
(

1 0

−h 1

)
⊗
(

1 0

−h 1

)
=


1 0 0 0

−h 1 0 0

−h 0 1 0

h2 −h −h 1

. (28)

Therefore, the elements of the matrix

T ′s = TA(h) =
(
t s11− hts12 t s12

t s21− hts22 t s22

)
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satisfy theRT T -equation (1) if and only if the elements ofTs satisfy it. Using the auxiliary
commutators given in the appendix by the formulae (A3), we can easily check the group
relations (11)–(16) and the identity

dethTs = 1.

Hence, the expressions (25)–(27) give us in closed form the realization of theSLh(2)
generators. Multiplying each of these formulae by ehC̃ (see (20)), we obtain the desired
exponential representation of the Jordanian quantum groupGLh(2).

Leaving out possible applications of the obtained formulae for construction ofGLh(2)
representations, let us note that the exponential form (7) implies the formula

T (h1)T (h2) = T (h1 + h2). (29)

ConsideringT (h) as the one-parameter set of matrices with non-commutative entries we can
define their action on a quantum vectorX by

T (h1)X(h2) =
(
t11(h1) t12(h1)

t21(h1) t22(h1)

)(
x1(h2)

x2(h2)

)
=
(
x1(h1 + h2)

x2(h1 + h2)

)
= X(h1 + h2) (30)

where

X(h) = T (h)
(

1

0

)
or X(h) = T (h)

(
0

1

)
.

SinceT is invertible one can say that equation (30) gives the isomorphism between quantum
vectors with differenth.

3. Hopf structure

A Hopf algebra structure on a matrix quantum group into the FRT framework [2] is defined as

1(T ) = T (⊗)T S(T ) = T−1 ε(T ) = 1l. (31)

Here(⊗)denotes the usual matrix product ofT -matrices with a tensor product of their elements.
The above exponential realization of the Jordanian quantum group permits us to obtain easily
an antipode of each of its generator because of the calculation of the inverse matrix elements
reduces to the changeh→−h in the exponential or, which is the same, in the formulae (25)–
(27). Using thus derived formulae we can obtain (in the case ofSLh(2)) the representation

S(Ts) = T−1
s =

(
t s22 + hts12 −t s12

−t s21− hts11 + hts22 + h2t s12 t s11− hts12

)
. (32)

Note that it is not possible to consider the transitiont sij → S(tsij ) by (32) as an involution
because ofS2(t sij ) 6= t sij . However, the following relation occurs:

S2(Ts) = UTsU−1 (33)

whereU = A(2h) with the number matrixA defined in (28).
Using the definition of comultiplication, antipode and counity (31) one can define a

heritable Hopf structure on the elements ofMs and, consequently, on the universal enveloping
algebra of the solvable Lie algebrasl∗(2, C). To this end we express the algebra matrixMs

via the group matrixTs

Ms = h−1 logTs . (34)
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This formula is correct since we consider the ‘deformation of the unit’ andTs − 1l ≈ O(h).
From the definition of co-operations and equation (34) we immediately obtain

1(Ms) = h−1 logTs(⊗)Ts = h−1 log eMs(1)eMs(2)

S(Ms) = h−1 logS(Ts) = −Ms

ε(Ms) = h−1 logε(Ts) = 0.

(35)

HereM(1) = M(⊗)1l, M(2) = 1l(⊗)M . According to (35), the definitions of the antipode
and counity are the same as in the undeformed case, but the definition of the comultiplication
is not. We derive the images of theMs-matrix elements under the comultiplication operation
by the Campbell–Hausdorff formula for the first two terms

1(Ms) =Ms(1) +Ms(2) + 1
2h[Ms(1),Ms(2)] + · · · .

For the algebrasl∗(2, C) generators we obtain

1(X̃(−)) = 10(X̃
(−)) + 1

2hX̃
(+) ∧ H̃ + O(h2)

1(X̃(+)) = 10(X̃
(+)) + hX̃(−) ∧ X̃(+) + O(h2)

1(H̃ ) = 10(H̃ )− hX̃(−) ∧ H̃ + O(h2)

(36)

where10(A) = A⊗ 1 + 1⊗ A is undeformed comultiplication. It is natural to recognize in
expressions (36) the 1-cocycleδ∗ of the bialgebra(sl∗(2), δ∗)

δ∗(X̃(−)) = 1
2X̃

(+) ∧ H̃ δ∗(X̃(+)) = X̃(−) ∧ X̃(+) δ∗(H̃ ) = X̃(−) ∧ H̃ .
This bialgebra is dual to the triangular Lie bialgebra(sl(2), δ)which is defined by the classical
r-matrix (10). Recall that the brackets and 1-cocycles of these Lie algebras are dual with
respect to a non-degenerate linear form(· , ·)

(δ∗(A),X ∧ Y ) = (A, [X, Y ]) ([A,B]∗, X) = (A ∧ B, δ(X))
whereX, Y ∈ sl(2), A,B ∈ sl∗(2). In our case the form is defined by its values which are
only distinct from zero:

(X̃(−), H) = (H̃ ,X(−)) = (X̃(+), X(+)) = 1.

The general expressions for results of comultiplication (35) are cumbersome, so let us consider
the simpler case of the triangular subgroup ofSLh(2)which is defined by the conditiont s12 = 0.
This subgroup is generated (via our representation (25)–(27)) byX̃(−) and H̃ . Since the
subalgebra generated by these generators is isomorphic to the Borel subalgebrab− of sl(2, C),
we omit the tilde in what follows.

To obtain the desired formulae we put formallỹX(+) = 0 in the expressions (25)–(27).
As a result we have

t
(−)
11 = ehX

(−)
t
(−)
22 = e−hX

(−)

t
(−)
21 = hHh = (H − 1)(X(−))−1 sinh(hX(−)) + he−hX

(−)
.

(37)

Equations (37) directly imply the commutation relation

[Hh,X
(−)] = −2

sinh(hX(−))
h

(38)

which is the relation among the generators of Jordanian deformation of algebrasl(2, c) [15].
Note here that our realization ofHh differs from those obtained in [5, 16]. To calculate
1(X(−)),1(H) induced by group comultiplication, we use equations (31),

1(t
(−)
11 ) = t (−)11 ⊗ t (−)11 1(t

(−)
21 ) = t (−)21 ⊗ t (−)11 + t (−)22 ⊗ t (−)21 .
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From the first of those we deduce thatX(−) is a primitive element ofUh(b−),

1(t
(−)
11 ) = eh1X

(−) = ehX
(−) ⊗ ehX

(−) = eh10X
(−)
.

Finally, using the explicit expression fort (−)21 (37) we obtain

1(H) = 1⊗ 1 + (HK0⊗ ehX
(−)

+ e−hX
(−) ⊗HK0 (39)

−K0⊗ ehX
(−) − e−hX

(−) ⊗K0 + he−hX
(−) ⊗ ehX

(−)
)(1K0)

−1. (40)

In this formula

K0 = (X(−))−1 sinh(hX(−)).

It can be found fromK (see the appendix) by putting̃X(+) = 0.
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Appendix

Using the explicit expressions fort2 andd2 one can check the following quadratic relations:

[X̃(±), t2] = 2X̃(+)X̃(±) [t2, H̃ ] = 2t2 + 2(X̃(−))2

[X̃(±),d2] = 2X̃(+)X̃(±) [d2, H̃ ] = 2d2 + 2(X̃(−))2

[d2, t2] = 4(X̃(+))2 d2X̃(±) = X̃(±)t2.
(A1)

It is useful to add to the relations (A1) the formula

d2n = t2n + 2nX̃(+)t2(n−1) (A2)

which is easily provable by induction. Indeed, we have

d2(n+1) = d2d2n = (t2 + 2X̃(+))(t2n + 2nX̃(+)t2(n−1)) = t2(n+1) + 2(n + 1)X̃(+)t2n.

The commutators (A1) and formula (A2) imply the following useful auxiliary relations. Denote
S = cosh(ht),K = t−1 sinh(ht). We have

[X̃(±),S] = hX̃(±)KX̃(+)
[S, H̃ ] = ht2K + hX̃(−)KX̃(−)

[X̃(±),K] = X̃(±)t−2(hS −K)X̃(+)
[K, H̃ ] = hS −K + X̃(−)t−2(hS −K)X̃(−).

(A3)
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